Answer

b. Shade the area in question. Since

Below 37.2 ms you would expect to
find the fastest 10% of the reaction
times.
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the fastest times would be less 10%
than 50 ms, we shade the extreme
left of the normal curve, : .

. . % 30 40 50 60 70 milliseconds
estimating 10%. o 0 41 42 zscores

. Next obtain the z score at the cutoff.

To do this, we look up 40% (.4000)
since the table reads data only from 40%
the center (z = 0) out.

Note in the table that the closest peg S S
value to 40% (.4000) is .3997, which
gives us a z score of z = 1.28. Since Normal Curve Table
the z value is below [, we must ('; LU RN
make the z value negative. Thus,
z = —1.28. . I
12 =

. Now use the z formula to solve for x, the real data value at the cutoff.

Essentially we know z (—1.28), and we wish to solve for x in the formula:

X m fp=50
T 6 c = 10

x— 50

—1.28 =
10
(10)(—1.28) = x — 50
—-12.8 =x — 50
372=x

orx = 37.2 ms

This calculation required some algebraic manipulation. First, we multiplied
both sides of the equation by 10 to obtain —12.8 = x — 50. Second, we
added +50 to both sides of the equation to get 37.2 = x. In other words, at
the cutoff, x = 37.2 ms.

Reaction

time
10%

=372 50 milliseconds
z=-1.28 0 z scores
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Practice 3

Answer

Practice 4

Answer

Normal Distribution

For the preceding problem, between what two
values would you expect to find the middle
95% of the reaction times?

Between 30.4 and 69.6 ms

X

Note: We must look up 47%% {half of 95%), or in decimal form
4750, to obtain z = 1.96 on both sides. When we substitute z
= —=1.96andz = +1.96 in our z formula, we obtain the
following:

sz—u Zix—}i
G o
x—=50 x =350
-1. = +1.96 =
o 10 10
x = 30.4ms Xx = 69.6 ms

(To solve, multiply both sides by 10, then add 50 to both sides.)

For the above problem, above what value would
you expect to find the slowest 70% of the reaction
times?

Above 44.8 ms

Note: 50% of the data is above 1t = 50 ms so we must look up the
remaining 20% (.2000). The closest value to .2000 is .1985, which is
equivalent to z = —.52. Substituting z = —.52 in our z formula, we
obtain the following:

Middle
e § 1 {7/ —

471 % | 47+ %

=304 ms 50
z=-1.96 0

X =069.6 ms
z=+1.96

rﬁ Slowest 70% —=

x =448 ms
z=-.52

Binomial Distribution: An Introduction to Sampling

Although some natural populations have distributions that can be approximated
with the normal curve, the normal curve’s importance is derived more from its
consistent and uncanny ability to predict the outcomes when we sample from a
population. Although different *“types’” of populations exist (from which we may

Two-category
population

Binomial
distribution

sample), one of the most important in research is

the two-category population.

A two-category population is a2 population where every member is
classified into exactly one of two categories.
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Examples of two-category populations are as follows.

Medical Population

Many thousands of users of a
new experimental drug designed
to cure a specific form of bladder
inflammation, classified into users
who were cured and users not
cured.

p =60%
(Percentage
of users who
were cured)

Psychological Population
Thousands of recipients of a new
drug-free therapy, classified into
those who showed improvement
and those with no improvement.

p=42%
(Percentage
of recipients
who showed
improvement)

Educational Population
Hundreds of thousands of SAT
verbal scores recorded over the
past five years, classified into
scores 330 or less and scores
above 330.

p=15%
(Percentage of
S.A.T. verbal
scores 330

or less)

Marketing Population
Hundreds of thousands of phone
calls made to New Jersey
residents last year by the Fullins
Co. selling magazine
subscriptions, classified into calls
resulting in a sale and calls
resulting in no sale.

p=3%
(Percentage
of calls
resulting

in a sale)

Manufacturing Population
Millions of assembly-line
batteries produced last month by
a large manufacturer, classified
into batteries defective and
batteries not defective.

p=6%
{Percentage
of batteries
defective)

Gambling Population

Billions of coin flips, classified
into those resulting in heads and
those resulting in tails.

p=50%

(Percentage of coin

tosses resulting
in a head)

Notice that we may describe such two-category populations by the letter p,

p=060%

the proportion or percentage classified into one of the categories. Of course, once

we know the percentage of the population in one category, we know the per-
centage in the other, since the sum of the two percentages must add to 100%.
For instance, in the medical population, the first example above, if 60% of the

(Implies 40%)

users of this experimental drug were cured, indicated by the shaded region, this

implies 40% were not cured. This 40% is represented by the unshaded region
(note: 60% + 40% = 100%).
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In case you were wondering, it doesn’t matter which of the two categories
in a two-category population we describe by p. For instance, in the manufacturing
population, we described this population of assembly-line batteries as p = 6%
defective, however a salesman for this company might describe this exact same
population as p = 94% okay. Most often, we assign p to the particular category
we are interested in.

One last important point: every member of a two-category population must
fall into one or the other category. In other words, each battery in the manufac-
turing population must be classified as either defective or not defective. Each
user of the experimental drug must be classified as either cured or not cured.
Each telephone call in the marketing population must be classified as sale or no
sale. There can be no borderline cases. Each member of the population uniquely
fits into one or the other category.

Sampling from a Two-Category Population

Once we determine we have a two-category population and describe this popu-
lation by p (the percentage of values in one category), then we may wish to know
what we can expect when we sample from such a population.

Since the methodology for determining such sampling evolved from early
gambling experiments. usually involving the tossing of coins or dice, we offer
the following.*

Suppose we have the following two-category population:

P =+ (or 50%) heads
Population: billions of
coin tosses classified
into those resulting in
leads and those
resulting in tails.

Now, if we were to randomly sample from this population, say for instance,
we sample 12 coin flips, what may we expect to happen? We know from theory
and a long history of experience, that if we were to randomly sample from any
large two-category population,

The sample proportion, p,.
Ps=p will be approximately equal to the
population proportion, p.

“This topic was introduced at the end of chapter 3, section 3.5.
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That is, since the population consists of 50% heads, then a random sample
should consist of approximately 50% heads. In the case of n = 12 coin flips, we
should get approximately 6 heads (50% of 12 = 6). However, we can also get 5
heads or perhaps even 9 heads. How can we determine the percentage of times
we can expect each of these outcomes to occur?

One way is to actually perform this experiment a great many times, as
follows.

12 coins dropped  Say we drop n = 12 coins on a table thou-
ma"gfl::;f: s sands and thousands of times and record

the number of heads achieved on each
drop, we would get something like the his-

— b el B ————

0123456789101112 togram shown here. (See footnote for further
Number of heads discussion.)
achieved

This is called a sampling distribution, defined as follows:

A sampling distribution shows us what we can expect when we
randomly select n values (a fixed number) repeatedly from a particular
population.

In fact, the above sampling distribution shows us what we can expect
when we randomly select n = 12 values repeatedly from a large two-category
population described by p = 4 (or 50%) heads.

These results can be summarized with the following diagrams:

Population: billions of
coin tosses classified as
heads or tails

p= L (or 50%) heads

Sampling distribution:

the result of thousands and
thousands of random samples
of size n = 12 drawn from
this huge two-category
population®

01 2345678 9101112 Number of heads achieved

*A sampling distribution technically is based on the concept of selecting all possible different
samples of a fixed size from a given population. However, even small populations produce
enormous numbers of different possible samples. Usually after randomly selecting several
hundred samples. the characteristics of a sampling distribution become quite clear. Rudimentary
sampling distributions in this text can be generated using Microsoft Excel (Tools, Data Analysis.
Random Number Generator, Histogram: for the given histogram, fifteen thousand samples were
randomly selected with the following random number input: 1. 15000, binomial distribution. p =
5. trials = 12). The obtained values of p and o, the mean and standard deviation of the sampling
distribution, matched calculated values (formulas to be introduced on page 123) to
approximately two decimal places. The technical concept of a sampling distribution is discussed
at length in chapter 5 endnote 2.
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Notice that this particular sampling distribution (the histogram) is sym-
metrical around the value we would most likely expect to occur. In the case of
dropping n = 12 coins, we would most likely expect 50% heads or 6 heads. And
indeed, in this instance, we do most often get 6 heads. This is called the expected
value and can be calculated as follows.*

Expected value = np ]

Since our sample size is n = 12, and the population proportion is p = +
heads,

Expected value = np
(12)(1/2 heads)
6 heads

Il

Although we indeed most often get 6 heads, on a great many occasions we get
somewhat more than 6 heads, and on a great many occasions somewhat less, with
the heights of the histogram bars falling off in a shape strongly resembling that
of a normal distribution.

Actually, this should not come as a surprise, since the initial discovery of
the normal curve evolved from these same early coin experiments; recall De
Moivre’s and Laplace’s work discussed at the beginning of this chapter.

In fact, these bell-shaped sampling distributions appear repeatedly in gam-
bling experiments when » is large. For instance, the following:

50 coins dropped
many thousands
of times

Suppose we drop n = 50 coins on a table
thousands and thousands of times and
record the number of heads achieved on

SR AT each drop, we would get a distribution
20 25 30 something like this.

Number of heads
achieved

“Expected value was defined in section 3.6 using the general formula, expected value
= Zxp(x). It can be shown for binomial experiments such as these, after algebraic
manipulation, expected value = np.
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Notice the sampling distribution is again symmetrical around the value we
would most likely expect, which is 25 heads (since the population consists of +
heads, then any random sample should consist of approximately + heads; + of
50 = 25). Again, this may be calculated as follows:

Expected value = np
(50)(1/2 heads)
= 25 heads

And indeed we do most often get 25 heads (see histogram above); however,
on a great many occasions we get somewhat more than 25 heads and on a great
many occasions somewhat less, with the heights of the histogram bars again
falling off in a shape resembling that of a normal distribution.

Okay, you might ask, this may happen with coin tosses. where the proba-
bility of a head for a coin toss is 3 (50%), but what if we sampled a different
population, say die tosses, where the probability of a particular face turning up
is + (163%). What happens then?

Well, let’s take 60 dice and paint one face on each blue (for identification
purposes).

60 Dice
T TR

One

blue face
> One
@ blue face e o o
on back

One
blue
One

face
blue
face

60 dice dropped
many thousands
of times

Suppose we drop n = 60 dice on a
table thousands and thousands of
times, and each time record the
number of blue faces that turn up. If
we tally the results into a histogram,

Number of blue faces
achieved

we would get a distribution something
like this.
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For a clearer picture of this, let’s summarize the results with the following
diagram.

Population: billions of die tosses
classified as tosses with blue face
turned up and tosses with no blue
face turned up.

p= 1+ (or 16+%) blue faces

Sampling distribution:

the result of thousands and
thousands of random
samples of size n = 60 drawn
from this huge population

Number of blue faces
achieved

Notice the shape of the sampling distribution (the histogram). It is sym-
metrical around the value we would most likely expect, in this case 10 blue faces.
In other words, since the population consists of ¢ blue faces, any random sample
should consist of approximately + blue faces (note: + of 60 = 10). Again, this
expected value can be calculated as follows.

np
(60)(1/6 blue faces)
10 blue faces

Expected value

Il

And indeed 10 blue faces is our most frequently occurring value. However,
on many occasions we get somewhat more than 10 blue faces and on many
occasions somewhat less, again with the heights of the histogram bars falling off
in a shape approximating that of a normal distribution.

Normal Curve Approximation to the
Binomial Sampling Distribution
These bell-shaped sampling distributions kept occurring with amazing regularity

in coin and dice experiments when n, the number of coins or dice dropped was
sufficiently large. Of course, at this point you might ask, how large must n be to
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be considered ‘‘sufficiently large’’? Large enough, so when multiplied by p or
(1 — p), the result exceeds 5—which leads us to the following important rule.

In these types of sampling experiments, known as binomial sampling
experiments (o be further defined in Section 4:5Y

/fexpected value (7p) > 5 andn{l - p) > 5

the sampling distribution (known as a binomial sampling distribution) will
be approximately normally distributed with mean and standard deviation

u = expected value (/70)
o= Jp(l - p

and a normal curve with these dimensions can be fitted over the distribution
and used to estimate probabilities.

Does this imply that if np or n(1 — p) is 5 or less. the normal curve cannot
be used to estimate probabilities? Yes, for np or n(1 — p) of 5 or less, the sampling
distribution is often skewed or sloping and generally the normal curve cannot be
depended on to give reliable estimates. For these special cases, other techniques
are available, which are discussed in chapter 11.

For the remainder of this chapter, we will demonstrate only those situations
where the sampling distribution can be approximated with the normal curve,
namely when

Expected value (np) > 5 and n(l—p)>=>5

Let’s see how this works in an example.

Out of 12 tosses of a coin, find the probability of achieving exactly 6 heads.

Since the expected value (np) = (12)(+) = 6, which is greater than 5, and
n(l = p) = (12)(1 = 5) = 6. which is greater than 5, we now know repeated
samples of n = 12 will produce a sampling distribution approximately normally
distributed such that a normal curve with mean and standard deviation as follows
can be used to estimate probabilities,

| = expected value = np o= np(l —p)
= 12(1/2) = J12(1/2)(1/2)
= 6 heads =1.73

Now, to answer the question, what is the probability that out of 12 tosses we will
achieve exactly 6 heads. we proceed as follows.
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Answer

Normal Distribution

Population, p = - heads
7 Binomial sampling
distribution
forn=12

coin tosses

T
789101112
5 o5 Number of heads

o 4
]
i
.
n
o 4

First, we shade the histogram bar
representing exactly 6 heads. Note the
shading must extend from 5.5 to 6.5
to include the entire width of the
histogram bar representing 6 heads.
This +-unit adjustment (referred to as
a continuity correction factor) is
necessary when the normal curve is
used to estimate probabilities in the
binomial sampling distribution. The
term continuity correction factor is
further defined at the end of the
example. Now fit a normal curve over
the histogram to estimate
probabilities.

Population, p = + heads

22.82%
(final answer)

7
|
11.41% [y
6t Number of heads
0 z score
¥=535 x=6.5
z=-29 z=+29

Resketch normal curve (for clarity)
and shade area from 5.5 to 6.5. Using
L =06and o = 1.73, we solve as we
would any normal curve problem by
first calculating the z score at the
cutoffs.

r—H 55-6 -
7= S———=——= 10
o} 1.73 173
The percentage of data from z = 0 to

z = —.291is 11.41%. Since there is an
equal amount of data from z = 0 to z
= +.29, we add 11.41%
+ 11.41% to get 22.82%.

Now we can say that the probability of achieving exactly 6 heads out of 12 tosses
is 22.82%. Visually, this can be represented as follows:

Population,
p= 4 heads

P (exactly 6 heads) = 22.82%

Binomial sampling distribution
for 1 = 12 coin tosses

| IR T [ W R R K it

0123456789101112
Number of heads achieved
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Terminology

Continuity Correction Factor
This refers to the +-unit shading adjustment(s) necessary to include the

entire width of the histogram bar(s) in guestion.

This is necessary since it is the area occupied by the histogram bar that represents
the probability that event will occur. So, remember, when using the normal curve
to estimate binomial probabilities, we must shade the entire histogram bar(s) in
question to get all the probability.

The binomial sampling distribution is sometimes referred to as a discrete
data distribution, meaning the distribution contains only discrete values.

Discrete Values
Values that, when presented on a number line, occupy only distinct

unconnected (or isolated) points.

Note in the histogram above, the data is classified only into values such as 0
heads. | head, 2 heads, 3 heads, etc. In other words, if 12 coins were dropped,
you could never achieve 34 or 54 heads. When data can assume only isolated
point values, such as in this case whole-number values, it is referred to as discrete.

m Binomial Sampling Distribution: Applications

Two-category
population

Binomial
distribution

Two-category
population

Successes

p=

Of course, at this point, you may very well say, who cares about this; these are
gambling experiments and I'm interested in business, psychology, medicine, ed-
ucation, or whatever.

Well, let’s say, these binomial sampling distributions will form no matter
what field of endeavor you apply them to, research in business, psychology.
medicine, education, or whatever, provided you conform to the fundamental as-
sumptions of binomial sampling, as follows.

Binomial sampling assumes selection from a two-category population
(with members in one category labeled “success'), such that

1. there is a fixed number of selections, /7 (often referred to as “n trials”),
2. with each selection (or trial) independent™ and each having the same
probability, 2, a success will be chosen.

“Independent means: whether or not we achieve a success on one selection in no way
affects the probability of achieving a success on any other selection.
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Binomial sampling can be used in a wide variety of contemporary appli-
cations, provided we conform to these fundamental conditions. These conditions
are necessary to conform to the basic fundamentals that are innate to coin. dice,
and other gambling experiments, on which the theory and mathematics is based.

Although we must evaluate every contemporary experiment on the above
formal terms, in actual practice these conditions can often be satisfied by simply

Obtaining a Valid* Random Sample

from a Large Two-Category Population

This will generally satisfy the above conditions for binomial sampling. A /arge
population is defined as any population at least 20 times the size of the
sample.

Let’s see how all this applies 1o a contemporary experiment.

Example From many thousands of users of a new experimental drug designed to cure a

specific form of bladder inflammation, it was found that 60% were cured.
Suppose we randomly select n = 15 individuals from this large two-

category population, what percentage of the time (or with what probability)

would we find 12 or more cured?

Solution Notice this is a binomial sampling experiment: there are 15 fixed selections from
a two-category population, each independent and each having the same proba-

bility a cured individual (a success) will be chosen. Random selection from a

large two-category population generally

satisfies these conditions. Furthermore,

e — since expected value (np) = (15)(.60) =

g b o M 9 and a(1 = p) = (15)(40) = 6, and both

are greater than 5, the resulting binomial
sampling distribution will be approxi-
mately normally distributed with mean

Binomial sampling distribution: ;4 standard deviation calculated as
the result of

Q&. v thousands of follows:

i Hlmplf,s n=np G = Jnp(l — p)
15(.60) = J15(.60)(1 — .60)
=9 = J/15(.60)(.40)

= 1.897
= 1.90

P =60% cured

Now a normal curve with these dimen-
sions (L = 9, ¢ = 1.90) can be fitted over
the histogram to estimate probabilities in
any portion.

1ssumes both internal and external validity, as discussed in
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So. to answer our question, out 0
what percentage of the time would we
follows.

Papulation,
p = 60% cured

Binomial
sampling distribution
for n = 15 selections

T
3 5 7 9 11N\I3 15 Number

&
Note: 11.5 S

First, we shade the histogram bars
representing 12 and above. Note the
shading must extend to 11.5 to
include the entire bar representing 12
cured. This half-unit adjustment is
called your continuity correction
factor. Now, we fit a normal curve
over the histogram.

Now we can say, 9.34% of the time we
randomly sample 15 from our populati
as follows:

f n = 15 randomly selected individuals
find 12 or more cured, we proceed as

Population,
p = 60% cured Normal curve
fitted over

histogram

Answer

9.34%

A0.6690 (50% — 40.66%)
& (]

o

_—
1

N

3

L
1]

2

Second, we resketch the normal curve
and shade the area 11.5 and above.
Using t = 9 and 6 = 1.90, we solve
as we would solve any normal curve
problem by first calculating the z
score at the cutoff.

_,\'—],1_1].5*9~2.5_
T 6 190 190

The percentage of data from z = 0 to
- = 1.32 is 40.66%. Subtract this
from 50% to get 9.34%.

will achieve 12 or more cured when we
on, and this can visually be represented

Binomial sampling distribution
for n = 15 selections

P (12 or more cured)
/: 9.349 (answer)

3 5 7 9 1

13 15

Number cured out of 15
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Importance of random selection

Importance of a large population

Let’s summarize: since the population consists of 60% cured, any random
sample will most likely consist of approximately 60% cured (60% of 15 = 9);
thus, in this case, approximately 9 cured would be expected. Achieving 12 or
more cured out of a sample of 15 is not very likely: in fact, this occurs only
9.34% of the time. ]

It is important when we conduct a binomial sampling experiment that we
maintain the conditions of independence and a constant probability of success
from selection to selection. Random selection from a large population allows for
this.

Note if selection in the above medical experiment were nof random: let’s
say we used only members of the same family for our sample of 15. Family
members may very well have similar genetic reactions to a drug. In this case, it
would not be unlikely to get 100% of the sample, or even 0% of the sample cured.
Generally, nonrandom samples violate the prime conditions for binomial sam-
pling, and will usually destroy our ability to predict probabilities. With random
selection we can be assured of maintaining a constant probability of a success
from selection to selection, and thus obtain a true representation of the
population.,

Second, if selection had been from a small population (under 20 times the
size of your sample), this would violate our condition of independence. For in-
stance, let’s say our entire population in the medical experiment were not many
thousands but instead merely 30 individuals, of which 18 were cured (60%). Now,
if we were to randomly sample 15 from this very small population, how many
cured individuals we selected, let’s say, on the first few picks would greatly affect
the probabilities associated with later picks.

Actually, sampling from small populations can be dealt with using other
statistical tools, but not the binomial.

Remember, random selection from a large population allows us to maintain
the conditions of the early coin and dice experiments, namely independence and
a constant probability of success from selection to selection. Serious violation of
these conditions can render your results valueless (and remember, for all sam-
pling in this text, we assume internal and external validity has been assured, as
discussed in chapter 1).

One more point before we continue. Keep in mind, the normal curve gives
an approximation. The histogram bars are wide and the normal curve may fit
well, but the fit is not perfect. For instance, the precise answer to the above
problem is 9.05%. Our answer is 9.34%. Most would consider this quite close.
Generally, for larger values of np and n(1 — p) (for instance, when both np and
n(1 — p) exceed 14) the normal curve approximation for most purposes is almost
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exact. Of course, this leaves somewhat of a gap for np and n(l —p) between 5
and 14 in which we must exercise some professional judgment in evaluating
probabilities. As a general rule. for np or n(1 — p) between 5 and 14, the prob-
abilities in the broad central region of the normal curve are considered reason-
ably accurate, while probabilities in the “very extreme” tails might best be ver-
ified with other methods. Other methods are available to get more precise
answers, however these methods can be quite tedious to implement (again,
more is discussed on these special cases in chapter 11). Now let’s try another
example.

This next example is presented not only for practice but to demonstrate
that the approximating normal curve may peak at a value of u that is not a
whole number, even though the data in the binomial histogram is classified into
discrete whole-number categories.

Out of millions of assembly-line batteries produced last month by a large
manufacturer, 6% were known to be defective.

Out of 170 randomly selected batteries from this population, find the
probability that 14 or fewer of these will be defective.

This is binomial sampling since there are 170 fixed selections, each inde-
pendent and each having the same 6% probability that a defective battery (a
success) will be chosen. Random selection from a large two-category
population generally satisfies the conditions for binomial sampling.

Since expected value (np) = (170).06) =

Popilatin:millions 10.2 and n(1 — p) = (170)(.94) = 159.8, and

of batteries

both are greater than 5, the sampling distribu-
tion will be approximately normally distrib-
uted with mean and standard deviation calcu-

’ Binomial sampling ; : .
i 'T“/ distribution for n = 170 Luted as follows:

p=.06(6%)
defective

selections™ w=np G = m .
= 170(.06) =170(.06)(.94)
=10.2 = 3.096

= 3.1 (rounded)

Note that the histogram shown is not quite

Number defective

o

g 10 12 14 symmetrical about any particular central value,

thus the peak of the approximating normal
curve will probably not be a whole number. In
this case, the approximating normal curve peaks at u = 10.2, which is not a
whole number. So, to answer the question, what is the probability that out of our
sample of 170 we will find 14 or fewer defective, we proceed as follows.

#Generated by computer simulation: Excel 5.0, Tools. Data Analysis, Random Number Generator,
1. 15000, Binomial Distribution, p = .06, 170, Histogram. The histogram represents the results
of fifteen thousand random samples of size n = 170.



130 Chapter 4

Answer

Normal Distribution

Population P =.06 (6%) defective Population p = .06 (6%) defective

Normal curve
fitted over histogram

Binomial
sampling distribution
for n = 170 selections

- fll | .‘; F 1‘0 I IIE I |4\|. . 10.2 f Number defective
Number defective Note: 14.5 L ja5 ¥Sc0mE
2= 1.39
First, we shade the histogram bars Second. we resketch the normal curve
representing 14 or less. Note the and shade the area 14.5 and below.
shading must extend to 14.5 to Using i = 10.2 and 6 = 3.1, we

include the entire bar representing 14 solve as we would any normal curve
defective. This half-unit adjustment is problem by first calculating the =
called your continuity correction score at the cutoff.

actor. Now we fit a normal curve
f Y—p 145102 43

over the histogram. =-"—=139
a = | 3.1

The % of data fromz = Q0 to - = 1.39
is 41.77%. Add this to 50% to eet
91.77% (answer).

lyj=}

Now we can say, 91.77% of the time (or with probability .9177) we will achieve
14 or fewer defective batteries when we randomly sample 170 from our pop-
ulation, and this can be visually represented as follows:

Population: millions
of batteries

p=.06(6%) defective

r P (14 or less defective)
1] =91.77% (answer)

Binomial sampling distribution
for n = 170 selections

TR I oo il S TN (N T [T i i (|

6 8 10 12 14
Number defective
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Note that the normal curve is merely a tool, a device we use to lay over the
histogram to help us determine the percentage of data in some portion of the
histogram. In these binomial sampling experiments, there can never be, in reality,
10.2 defective batteries or 14.5 defective batteries. You can get 10 or 11 or 13
or 15 or any whole number of defective batteries but never 10.2 or 14.5. These
numbers are location points on our estimating device, the normal curve.

One more point concerning this problem: Say we were employed as a
Quality Control manager on the assembly line that produces these batteries and
from a month’s production we randomly sampled n = 170 and found 22 defective
batteries, what would you conclude? Look at the histogram.

Population: millions
of batteries

p = .06 (6%) defective

50 Binomial sampling distribution

> _.,./ for n = 170 selections

1T 1 1. 11 1T 1T 11

6 8 10 12 14
Number defective

Certainly, if the population proportion were indeed p = 6% defective, then
272 defective batteries out of our sample of 7 = 170 would be an extremely rare
event—in fact, nearly impossible. You can tell this just by looking at the histo-
gram. The question is: did this extremely rare event occur or is the manufacturing
process malfunctioning? In other words, is production out of control and no
longer holding down the defective rate to p = 6%? Certainly, a prudent quality
control manager would investigate and would do so immediately before the pro-
cess possibly degenerates further. [}

One last point concerning np = 5 and n(1 — p) = 5 in a binomial sampling
experiment:

ne = Expected Number of Successes
n{1 — p) = Expected Number of Failures
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For example, in our battery experiment with n = 170 selections, we calculated
np = 10.2 and n(1 — p) = 159.8. That is,

Expected Successes +  Expected Failures = Total Selections
(10.2 defective batteries) + (159.8 okay batteries) 170 selections

Il

So, instead of saying np and n(1 — p) must each exceed 5 for the sampling
distribution to be approximately normally distributed, we can say expected
number of successes and expected number of failures must each exceed 5 for the
sampling distribution to be approximately normally distributed, and the sum of
these two numbers equals #, the total selections.

Summary

Perhaps the single most important distribution in all

of statistics is the bell-shaped or normal distribution.

The distribution was discovered seemingly under
different circumstances by De Moivre (1733),
Laplace (1781), and Gauss (1809) and encountered
so frequently in experiments that sometime in the
mid-to-late 1800s it adopted the name, normal.

Characteristics of the normal distribution:
Bell-shaped, fading at tails; symmetrical about M,
the mean, with 50% of the data in each half.
Approximately 68% of the data lies within +1

standard deviation of the mean, whereas
approximately 95% of the data lies within +2
standard deviations of the mean.

Normal curve table: This table offers the
percentage of data in the normal curve between
= 0 (the position of [t) and any z score you look
up. Recall, a z score is the number of standard
deviations a value is away from the mean. To
precisely calculate the z score of a value. x. we
use the formula
X— U
o

Normal Curve Table Usage

To Find Area, A

S

We Use the Following Procedure

A, the area between 0 and z can be found directly
in the normal curve tables,

0 z
= 50% — (area between () and z)

D 4N

= (area0toz;) — (1red Oto 'l)

AN D

= (areaOtoz)) + (dl’edol[),.,)




Working backward: The normal curve table
can also be used in reverse. If we know the per-
centage of data between 0 and z, we look up this
area (in decimal form) in the table and determine
the closest z value. If the percentage of data falls
precisely midway between two values, we round
to the higher z score.

Sampling from a Two-Category Population

Two-category population: A two-category
population is a population where every member is
classified into exactly one of two categories.

Sampling distribution: A sampling distribution
shows us what we can expect when we randomly
select n values (a fixed number) repeatedly from a
particular population.

Binomial sampling distribution: The resulting
sampling distribution when we randomly select n
values repeatedly from a large two-category
population, where each selection is independent
and each has the same probability. p. a success will
be chosen.

Large-n binomial sampling: For both np and
n(1 — p) greater than 5, the binomial sampling
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distribution can be approximated with a normal
curve with the following dimensions:
= np

c = vnp(l —p)

Continuity correction: This refers to the +-unit
shading adjustment(s) necessary to include the
entire width of the histogram bar(s) in question.

Discrete values: The binomial sampling
distribution is sometimes referred to as a discrete
data distribution, discrete, meaning values that
when presented on a number line occupy only
distinct unconnected (or isolated) points. However
to assess probabilities we represent these discrete
values with histogram bars, where the area of a
histogram bar at some value represents the
probability of achieving that value.

Small-n binomial sampling: For ip or

n(1 — p) of 5 or less, the binomial sampling
distribution is often skewed or sloping and the
normal curve cannot be depended on to give
proper estimates. For these cases, other techniques
can be employed that are discussed in chapter L1,
section 11.1.

Note that full answers for exercises 1-5 and
abbreviated answers for odd-numbered exercises
thereafter are provided in the Answer Key.

4.1

a. It was widely believed in the mid-1800s that
given enough observations all natural phenomena,
such as, heights, weights, reaction times, etc.,
from any common grouping will take on the shape
of a normal distribution. Is this so? Explain.

b. In the construction of the idealized normal curve,
three primary assumptions were presented. List
each and explain.

¢. The idealized normal curve has a number of
characteristics. List four characteristics.

4.2 Use the normal curve table to determine the
percentage of data in the normal curve

a.
b.
[
d.

between z = 0 and z = .82,
above z = 1.15.

between z = —1.09 and z = 47.
between z = 1.53 and z = 2.78.

Work backward in the normal curve table to solve
the following:

e.

32% of the data in the normal curve can be found
between z = O and z = 7

. Find the z score associated with the lower 5% of

the data.

. Find the z scores associated with the middle 98%

of the data.
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4.3 Suppose the heights of all female students at
University of Maryland in College Park are known to
be normally distributed with u = 5’5" and ¢ = 2",
find the percentage of female students

a. under 5'2"",
b. between 5’24 and 5'8"".
c. between 5'8%"" and 5'9%"".

4.4 Ebbinghaus in 1885, in a landmark experiment
in Experimental Psychology, repeatedly measured the
time necessary for an individual to memorize equal
blocks of nonsense syllables (such as, zid, cuk, xot)
and found the times to be normally distributed.
Using Ebbinghaus’s data, suppose this
individual takes an average of u = 21.0 minutes Lo
complete the task of memorizing a block of nonsense
syllables with standard deviation, ¢ = 1.2 minutes.

a. Below what value would you expect to find the
fastest 10% of the times? (Note: the fastess times
would be less than 21.0 minutes, thus we shade
the extreme left of the normal curve, estimating
10%.)

b. Between what values would you expect to find the
middle 50% of the times?

4.5 Selecting random samples of the same size
repeatedly from a large two-category population
creates a sampling distribution, known as a binomial
sampling distribution, which is approximately
normally distributed for expected value (np) > 5 and
n(l — p) = 5. Use this information to answer the
following.

a. In a population of many thousands of users of a
new experimental drug designed to cure a specific
form of bladder inflammation, it was found that
60% were cured. Suppose we randomly select 15
users from this population, what is the probability
we will find 7 or less cured?

Can we apply this population proportion (p = 60%
cured) to future users, say in the case where the
drug is to be distributed in another country? That
is, can we expect about 60% cured? Discuss
briefly.

=

4.6 Use the normal curve table to determine the
percentage of data in the normal curve

a. between %1 standard deviation.
b. between #2 standard deviations.
¢. between %3 standard deviations.

4.7 Use the normal curve table to determine the
percentage of data in the normal curve

a. between z = 0 and z = .38.

b. above z = —1.45.

c. above z = 1.45,

d. between z = .77 and z = 1.92,
e. between z = —.25and z = 2.27.

f. betweenz = —1.63 and z = —2.89.

Il

Work backward in the normal curve table to solve
the following.

g. 15% of the data in the normal curve can be found
betweenz = O and z = ?

h. Find the z score associated with the upper 73.57%
of the data.

i. Find the z scores associated with the middle 95%
of the data.

4.8 Suppose standard IQ scores are known to be
normally distributed with @ = 100 and ¢ = 15. Find
the percentage of individuals with 1Q scores

a. above 125.

b. above 90.

¢. between 62 and 72.
d. below 88.

Work backward in the normal curve table to solve
the following.

e. Above what value would you expect to find the
upper 30% of 1Q scores?

f. Between what values would you expect to find the
middle 75% of 1Q scores?

4.9 Biological characteristics of a species are
sometimes found to be near normally distributed.
Suppose American anchovies, Engraulis
encrasicholus, a species of herring commonly used
on pizza, is known to have lengths that are normally



distributed with u = 10.2 centimeters (about 4"') and
6 = .68 centimeters (cm). Find the percentage of
anchovies with lengths

a. below 9.0 cm.

b. below 10.7 cm.

¢. between 9.5 cm and 10.8 cm.
d. between 11.0 cm and 11.4 cm.

Work backward in the normal curve table to solve
the following.

e. Above what length would you expect to find the
longest 15% of anchovies?

f. Between what lengths would you expect to find
the middle 99% of anchovies?

4.10 Human characteristics are sometimes found to
be near normally distributed. Quetelet in 1846 was
probably the first to demonstrate this using the chest
measurements of Scottish soldiers. He found the
chest measurements to be normally distributed with
it = 39.5"" and o = 2.5"". Find the probability of
randomly selecting a measurement

a. between 36.5"" and 38.5"".

b. above 38.2"".

¢. between 39.2"" and 40.6"".

d. between 39.5"" and 44.7"".

e. Below what value would you expect to find the
smallest 40% of the chest measurements?

f. Between what values would you expect to find the
middle 96% of the chest measurements?

4.11 Galton demonstrated that large normal
populations may, in fact, be comprised of several
smaller normal populations. In 1875 he separated
sweet pea seeds from the same parent by weight into
several groups. Each group produced sweet peas with
normally distributed weights but around different
averages. When combined, these several smaller
normal distributions formed into one large normal
distribution centered around one common average.
Suppose the weights of a number of subspecies
of Granny Smith apple combine to form one large
normally distributed population of Granny Smith
apple with L = 6.9 ounces (0z) and ¢ = 1.1 oz.
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a. What percentage of Granny Smith apples weigh
more than 8.5 oz?

b. What percentage of apples weigh between 7.2 oz

and 8.0 oz?

If you randomly select a Granny Smith apple,

what is the probability the apple weighs less than

7.0 oz?

d. Above what weight would you find the heaviest
65% of the apples?

e. Between what weights would you find the middle
84% of the apples?

[

4.12 A binomial experiment is formally defined as
a fixed number of trials (or selections), each
independent and each having the same probability for
success. Show how these conditions are met and
solve the following.

a. Out of 20 tosses of a coin, what is the probability
of getting 13 to 15 heads?

b. Out of n = 50 die tosses (one face of die is
painted blue), what is the probability of turning up
10 or more blue faces?

4.13 The U.S. Military Academy at West Point is
one of the nation’s most selective colleges, accepting
11%* of applicants (according to the Insider’s Guide
to the Colleges). Out of n = 60 randomly selected
applicants to the U.S. Military Academy,

a. how many would you expect to be accepted?

b. what is the probability 8 or less will be accepted?

¢. what is the probability between 5 and 7 will be
accepted?

d. what is the probability exactly 6 will be accepted?

4.14 67% of Americans feel secret files are being
kept on them (based on data from The Harper's
Index). Out of 25 randomly selected Americans, what
is the probability 18 or more will feel secret files are
being kept on them?

4.15 75% of those working in the visual, literary,
or performing arts earn low wages from their art,
under twelve thousand dollars per annum, based on
data from Columbia’s Research Center for Arts and

#*Harvard accepts 15%.
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Culture (Columbia Magazine, Summer 1990, p. 14).
Out of 30 randomly selected artists,

a. how many would you expect to earn low wages?

b. what is the probability you will find at least 20
earning low wages?

¢. what is the probability you will find 24 to 27
earning low wages?

4.16 In a marketing population of phone calls, 3%
produced a sale. [f this population proportion (p=
3%) can be applied to future phone calls, then out of
500 randomly monitored phone calls,

a. how many would you expect to produce a sale?
b. what is the probability of getting 11 to 14 sales?
¢. what is the probability of getting 12 or less sales?

4.17 In a study on aggression, 23% of mice
exposed to severe conditions of overcrowding
resorted to bizarre social behavior, such as
cannibalism. If this is representative of all mice, out

b. find the probability you will get 18 or less that
exhibit bizarre social behavior,

¢. How valid is our assumption that p = 23% can be
assigned to all mice? Discuss briefly.

4.18 38% of American high school students agree
with their parents on the value of an education
(according to studies from the University of
Michigan, Institute for Social Research, “*Monitoring
the Future’”).* Out of n = 45 randomly selected
American high school students,

a. find the probability that 35 or more will agree
with their parents on the value of an education.

b. find the probability that 41 to 44 will agree with
their parents on the value of an education.

c. If we were to randomly sample n = 45 American
high school students ten years from now, can we
expect about 88% of the sample to agree with
their parents on the value of an education?
Discuss briefly,

of a randomly selected group of n =

exposed to these severe conditions,

a. find the probability you will get from 20 to 25 that

exhibit bizarre social behavior.

Endnotes

100 mice

*The same studies also revealed only 47% agreed with

their parents on what's permitted on a date.

1. De Moivre, although born in France, was
obliged to move to England as a young man
under the Edict of Nantes (which restricted
religious and civil liberties to Huguenots),
and in England De Moivre worked as a math-
ematics tutor and consultant for wealthy
patrons.

2. Actually De Moivre simulated the number
of heads expected when » coins are dropped
by using the expansion of (I + 1)". One can
also use the coefficients of the expansion
(a + b).

3. De Moivre did not use the term, standard
deviation. In fact, technically the concept of
standard deviation was not to be fully recog-
nized for at least another seven decades. until
after Legendre’s work on least squares (1805)
in which he demonstrated T (x — W) was min-
imum about the mean (refer to chapter 9, sec-
tion 9.0, under **Least-Squares Analysis™* for

further reading on this). De Moivre’s predict-
able distance was calculated to be a1,
which we now know as the standard deviation

; A . |
in a binomial experiment when p = 5 | that

is, ¢ = Unp(l — p) = n_; i = %\/’; In
this case, where n = 900, ¢ = *L-‘,-’W

= - 30 = I5. This is further discussed
in section 4.4. De Moivie arrived at
T\/; (actually, 5/n — 2. which is essen-
tially equal to %\5 for large n) by deter-
mining the inflection points on the curve.

4. De Moivre's work at the time went rela-
tively unnoticed and one can only speculate
why. Perhaps the most probable reason is that
mass statistical data was not as yet available,
thus the practical application of De Moivre's
discovery to social phenomenon could not be
readily demonstrated—although De Moivre
and a number of others felt it was only a
matter of time until the laws of probability
would be applied to a variety of social issues.

For an insightful discussion on this lopic,
refer to S. Stigler, The History of Statistics
(Cambridge: Belknap Press, 1986), pp. 85—
87.

5. It was unclear whether Laplace was fa-
miliar with De Moivre’s work published 50
years earlier since he never mentioned De
Moivre in his papers and his mathematical ap-
proach was quite different.

6. Laplace used the illustration of black and
white tickets drawn from an urn.

7. At the time, Laplace (like De Moivre) was
unaware of the concept of standard deviation.
Laplace used a rather complex formulation to
arrive at a suitable measure of spread. It was
adequate for his purposes, but like much of
Laplace’s work exceedingly complex.

8. The actual figures were 251,527 males out
of 493,472 births. All figures were scaled to
500.000 births for clarity.



9. The precise percentages were: Paris,
50.97% male births: London. 51.35%;

Kingdom of Naples, 51.16% (Stigler, 1986).

10. According to Newsweek (April 16, 1990,
p. 81). current averages worldwide are 50.6%
male births, 49.4% female (102.5 males are
born for every 100 females).

11. Gauss's reasoning essentially proceeded
as follows: (1) it was generally acknowledged
at the time that the arithmetic mean of several
measurements was the best estimate of plan-
etary position, (2) since the mean is most
probable only if the errors are normally dis-
tributed, according to the method of least
squares, then (3) errors must be normally dis-
tributed. Although one may find fault with
Gauss’s reasoning. the impact was monu-
mental. Laplace seized on the argument
giving it a solid base in logic based on his
work with probability experiments.
Essentially, Laplace reasoned that a single

observation must itself be an aggregate of

more fundamental errors just like the outcome
of 900 coins dropped on a table is the aggre-

gate of many head-tail outcomes. It is sur-
prising Laplace himself had not made the
discovery, considering his intense involve-
ment in both astronomy and probability
theory.

12. Planets such as Jupiter and Saturn were
not used at sea to measure longitude because
of their relatively slow movement and other
difficulties of measurement while at sea.
Moon craters were highly visible and the
Moon’s motion relatively fast, offering more
precise measurements.

13. Gauss and others in the 1800s used a va-
riety of standard distances from the mean,
however many were multiples of the standard
deviation, such as .675 o, which was referred
to as the probable error, since 50% of the
errors were expected to fall within £.675 ¢ of
. In 1893, Pearson coined the term standard
deviation and advocated its universal use.

14. Use of the normal distribution was con-
fined mostly to astronomy for several decades
and, thus, throughout much of the 1800s was
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referred to as Gauss's law of error. Even to
this day, the normal distribution is sometimes
called the Gaussian distribution.

15. For further readings in this area, refer to
H. Walker, Studies in the History of Statis-
tical Merhod (Baltimore: Williams & Wil-
kins. 1929) and Stigler (1986).

16. In his newborn infant study (discussed in
section 4.0), Laplace devised methods for cal-
culating certain probabilities associated with
the binomial distribution as n — e which
Kramp in 1799 used to construct a full table
of normal curve probabilit

17. Kramp prepared the tables using 6.2 as
the unit measure of dispersion, referred to as
the modulus. Contemporary tables use @, the
standard deviation. Shepperd (1902) was the
first to publish a table using ©. the standard
deviation, as the unit measure.

18. E. W. Scripture, The New Psychology
(1897), p. 443, as discussed and footnoted by
Walker (1929), p. 24.






